WALNUT HEDGEROW PLANTING ON MARGINAL SOILS
John Edstrom, Bill Krueger, Wilbur Reil

ABSTRACT

This report summarizes 1997 results from the Nickels Soil Lab walnut hedgerow trial on marginal soil. The performance of two varieties (Chandler and Howard) and two rootstocks (Paradox and Northern California Black) are being compared on slip plowed and unmodified soil. Rootstock continues to have the greatest impact on yield with both varieties (Chandler and Howard) and under both slip plowed and unmodified soil conditions. Average yield for 1997 for both varieties on both soil conditions was 7472 lbs/Ac for Paradox rooted trees versus 5274 lbs/Ac for NC Black rooted trees, representing a 1 ton/Ac yield advantage for Paradox.

Chandler and Howard yields were equal for this season. No advantage to date has been shown for the slip plow soil treatment versus unmodified soils. Kernel quality from this trial compares favorably with like varieties in major growing districts.

OBJECTIVES

1) Investigate the feasibility of producing English walnuts on marginal soils using a hedgerow planting system and micro-irrigation.

2) Assess the effect of soil modification (slip plowing) on tree growth and performance under the soil conditions found at the Nickels Soil Laboratory.

3) Compare the performance of Northern California Black and Paradox rootstocks on soils of the type found at the Nickels Soil Laboratory.

4) Test the adaptability of two relatively new walnut cultivars, Chandler and Howard, to the hedgerow system.

PROCEDURE

The trees were planted during the spring of 1986 at the Nickels Soil Laboratory in Arbuckle. The planting configuration was a dense hedgerow, 12 ft. between trees in the row and 18 ft. between the rows, giving 202 trees per acre with a north-south row orientation. Prior to planting, half of the plot was slip plowed to a depth of 6 ft. on 10 ft. centers north and south. Six replications of four treatments were planted in a randomized complete block design in both the slip plowed and non-slip plowed sections. The eight combinations being evaluated are:

1. Howard-Paradox
2. Howard-Paradox
3. Howard-Paradox
4. Howard-Paradox
5. Howard-Non Slip Plow
6. Howard-Non Slip Plow
7. Howard-Non Slip Plow
8. Howard-Non Slip Plow
3. Howard-NC Black
4. Howard-NC Black
5. Chandler-Paradox
6. Chandler-Paradox
7. Chandler-NC Black
8. Chandler-NC Black

Trees grafted to Howard on Paradox were unavailable at planting time, so, Paradox seedlings were planted and then grafted to Howard in 1987. Cisco and Franquette were planted around the outside of the plot to insure adequate pollination (12% pollinizers).

The trees are drip irrigated, using ET calculations based on data from the nearby CIMIS weather station, and received monthly N applications via drip lines. Initially the trees were irrigated with a single drip line per row. In response to unacceptable vigor in 1990, a second drip hosed was added, which approximately doubled the wetted soil area in 1991. Since this change, shoot growth has been acceptable for a developing walnut orchard. Potassium sulfate is applied at 1 lb./emitter (600 lbs./acre), each fall.

The trees were trained and pruned to develop a fruiting wall. Both the east and west sides of the hedgerows were mechanically hedged and the trees topped yearly through March of 1992. In March 1993, yearly alternate side mechanical hedging began by pruning one side of the hedgerow 4 feet from the trunk of the trees. Moderate mechanical topping has been performed yearly as needed to stimulate top growth to the desired tree height of 16 feet. However, for 1995 topping was performed only on short stunted trees (mainly plots with NC Black). Thus, the more vigorous treatments which had achieved the desired height of 16 feet were left unheaded for the 1995 and subsequent growing seasons.

RESULTS

Yield results presented in the accompanying tables continue to show a substantial and consistent yield advantage to Paradox Hybrid rooted trees compared to trees on NC Black rootstock. This holds true for both varieties and under both soil conditions. Also notable is the consistency of this Paradox advantage over nine consecutive years of yield data collection (1989-1997).

Although the Howard variety has generally out yielded Chandler in most years, no differences were found between the two varieties this season. This is of particular interest in light of the observation that the Howard variety generally responds (yields) better to yearly alternate side mechanical hedging than the Chandler variety. The effect of slip plowing in this test is unclear. Limited backhoe pit investigations have shown deeper and more extensive rooting beneath slip plowed trees. However, trunk growth measurements and yields show no advantages to the slip plowed treatment. The data actually show higher production for non-slip plowed trees. However, these figures are not statistically valid. (Slip plow and non-slip plowed areas are side by side blocks and not replicated.) It should be noted that soil conditions vary significantly within the trial area. About fifty percent of the test area consists of Arbuckle sandy loam to a depth of 4 - 5 feet. The Hillgate series covers the remainder exhibiting a similar sandy loam texture but only to a depth of two feet where a dense clay
layer limits deeper rooting. Past data has shown no yield difference between the two soil treatments. Given the use of high frequency (2-4 times per week) drip irrigation and monthly fertilization, mixing soil layers may not benefit yield. Also, current slip plow recommendations include a diagonal pass of the plow in addition to the main direction. Here, the machine made only one pass in a North-South direction.

Surprisingly, this test plot continues to produce high walnut yields of desirable quality despite adverse soil conditions. More work will be required to fully evaluate this walnut production strategy in terms of economics. Horticulturally, the eighteen foot row width is too close and impractical for commercial use. Under these soil conditions, Howard needs at least twenty feet between rows while Chandler would seem to require at least twenty-two feet.

Yearly & Accumulative Yields (lbs./acre)

<table>
<thead>
<tr>
<th>Variety</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
<th>11th</th>
<th>12th</th>
<th>Accum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'89</td>
<td>'90</td>
<td>'91</td>
<td>'92</td>
<td>'93</td>
<td>'94</td>
<td>'95</td>
<td>'96</td>
<td>'97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard Paradox</td>
<td>404</td>
<td>1085</td>
<td>2343</td>
<td>4308</td>
<td>5476</td>
<td>5680</td>
<td>5290</td>
<td>4822</td>
<td>7393</td>
<td>36,800</td>
</tr>
<tr>
<td>Chandler Paradox</td>
<td>571</td>
<td>979</td>
<td>2498</td>
<td>3434</td>
<td>4883</td>
<td>5053</td>
<td>6243</td>
<td>4479</td>
<td>7551</td>
<td>35,691</td>
</tr>
<tr>
<td>Howard Black</td>
<td>387</td>
<td>976</td>
<td>1901</td>
<td>3051</td>
<td>3770</td>
<td>3961</td>
<td>3680</td>
<td>3448</td>
<td>5373</td>
<td>26,547</td>
</tr>
<tr>
<td>Chandler Black</td>
<td>457</td>
<td>757</td>
<td>1901</td>
<td>2562</td>
<td>3647</td>
<td>3815</td>
<td>4185</td>
<td>3203</td>
<td>5175</td>
<td>25,702</td>
</tr>
</tbody>
</table>

1997 Yield Comparisons

<table>
<thead>
<tr>
<th>Variety</th>
<th>lbs/Ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC Black Rootstock</td>
<td>5274</td>
</tr>
<tr>
<td>Paradox Rootstock</td>
<td>7472 ***</td>
</tr>
<tr>
<td>P < 0.001</td>
<td></td>
</tr>
<tr>
<td>Howard</td>
<td>6383</td>
</tr>
<tr>
<td>Chandler</td>
<td>6363 ns</td>
</tr>
<tr>
<td>Non-Slip</td>
<td>6792</td>
</tr>
<tr>
<td>Slip Plowed</td>
<td>5954 ns</td>
</tr>
<tr>
<td>Howard</td>
<td>7172</td>
</tr>
<tr>
<td>Non-Slip Howard</td>
<td>6411</td>
</tr>
<tr>
<td>Slip Howard</td>
<td>6354</td>
</tr>
<tr>
<td>Slip Chandler</td>
<td>5554</td>
</tr>
</tbody>
</table>

Disk #12, walhedma.wpd